

Home Search Collections Journals About Contact us My IOPscience

A Raman study of the ring defects in ${\rm GeO}_2\mbox{-}{\rm SiO}_2$ glasses

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 6343 (http://iopscience.iop.org/0953-8984/1/36/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.93 The article was downloaded on 10/05/2010 at 18:46

Please note that terms and conditions apply.

A Raman study of the ring defects in GeO₂–SiO₂ glasses

Xiao Nian[†], Xu Zhisan[†] and Tian Decheng[‡]

† Centre of Analysis and Measurement, Wuhan University, Wuhan, People's Republic of China

‡ Department of Physics, Wuhan University, Wuhan, People's Republic of China

Received 3 November 1988, in final form 13 February 1989

Abstract. The Raman spectra of GeO_2 -SiO₂ glasses have been studied using samples of different GeO₂ contents, which are found to have the general features of the spectrum of vitreous SiO₂ (v-SiO₂). It is demonstrated that substitution of Ge for Si in the v-SiO₂ network prevents the formation of ring structures. A new vibrational band located at 570–700 cm⁻¹ was found in the spectra of high-GeO₂-content samples (above 5.0 at.% GeO₂). It is also shown that the W₃ vibration of the v-SiO₂ network is reduced in highly GeO₂ doped GeO₂-SiO₂ glasses.

1. Introduction

The vibrational spectra of amorphous solids consist primarily of broad lines, whose width has been ascribed to disorder in the bond angles (Bell 1982, Galeener 1979), force constants (Martin and Galeener 1981) and breakdown in vibrational rules (Shuker and Gammon 1970). However, attention has been drawn to significantly narrow lines which are also part of the Raman spectra of several glasses (Galeener 1982a, b, Griscom 1978, Lucovsky *et al* 1983, Bridenbaugh *et al* 1979). It has been proposed (Galeener 1982a, b) that these sharp lines in vitreous SiO₂ (v-SiO₂) are due to the highly regular rings in the v-SiO₂ network.

Recently, EXAFS and x-ray scattering experiments were carried out on GeO_2 -SiO₂ glasses (Greegor *et al* 1987) to determine their structures. The analysis indicated a substitutional model in which Ge substitutes randomly for Si in the v-SiO₂ network with little Ge clustering. However, information about the ring structures was not included in the data. In this paper, we present the Raman spectra of the GeO₂-SiO₂ glasses, from which we investigate certain characteristic properties of the ring defects.

2. Experimental details

Seven samples were employed in this investigation: v-SiO₂; 0.1 at.% GeO₂-99.9 at.% SiO₂; 1.0 at.% GeO₂-99.0 at.% SiO₂; 5.0 at.% GeO₂-95.0 at.% SiO₂; 13.0 at.% GeO₂-87.0 at.% SiO₂; 15.0 at.% GeO₂-85.0 at.% SiO₂; 25.0 at.% GeO₂-75.0 at.% SiO₂. These samples were prepared by a vapour-phase oxidation process. (MCVD method) using vapour mixtures of GeCl₄ and SiCl₄. In this process a porous preform of v-SiO₂ or GeO₂-SiO₂ glass is prepared by depositing the 'soot' reaction products (from

hydrolysis–oxidation of GeCl_4 –SiCl}4 vapour mixtures by a hydrogen–oxygen flame) onto the inside wall of a bait quartz tube rotating in air. This porous preform is then sintered to a high-quality bubble-free glass rod at 1500 °C. The glass composition is controlled by varying the SiCl₄ and GeCl₄ vapour flows. The GeO₂ content was determined by x-ray energy dispersion techniques as well as deflection rate measurements. A round plate 11.24 mm in diameter and 5.00 mm in thickness was cut from this rod. Samples sectioned from these plates along the diameter were fixed with a clamp. The Raman spectra were obtained from a Jobin–Yvon U-1000 Raman spectrometer in the standard 90° scattering configuration at 200 mW from the 514.5 nm line of an Ar⁺ laser.

3. Results and discussion

The Raman spectra obtained in our experiment is shown in figure 1. The broad features are labelled W_1 and W_3 as suggested by Galeener (1979). They have been identified as the vibrations of the v-SiO₂ network as described by a nearest-neighbour central-force dynamical theory (Galeener 1979, Sen and Thorpe 1977). The defect lines labelled D_1 and D_2 have been interpreted by Galeener 1982a, b) as arising from the symmetric stretch of planar threefold and regular fourfold ring structures, respectively. These rings are embedded in the more irregular glass network that accounts for the broad lines.

It is demonstrated in the figure that the Raman spectra of SiO_2 -GeO₂ glasses containing a relatively small fraction of GeO₂ have the general features of the v-SiO₂ Raman spectrum. However, the changes in defect lines are obvious. With increasing GeO₂ content, the intensity of the D₁ line decreases sharply, while that of the D₂ line decreases slowly and broadens.

The decrease in the intensities of the D_1 and D_2 lines indicates a decrease in the number of fourfold and threefold ring defects in the GeO_2 -SiO₂ network. This reduction signifies that the substitution of Ge for Si in the v-SiO₂ network prevents the formation of the ring structures.

According to the results of EXAFS and x-ray scattering (Greegor *et al* 1987) and the fact that the Raman spectra of GeO_2 -SiO₂ glasses have the general features of the v-SiO₂ Raman spectrum, the structure of GeO_2 -SiO₂ glasses can be considered to be such that there are some GeO_4 tetrahedra in the GeO_2 -SiO₂ glass network, and the number of tetrahedra is determined by the GeO_2 content. In this structure, fewer fourfold and threefold ring defects exist than in v-SiO₂.

In the v-SiO₂ network, a ring structure (fourfold or threefold ring defect) occupies more volume than does an SiO₄ tetrahedroid. For an Si–O bond length *a* of 1.62 Å, an O-Si–O bridge angle θ of 144° and an Si atomic radius *r* of 1.172 Å, we can estimate the volumes of an SiO₄ tetrahedroid, a threefold ring and a fourfold ring as $V_T = 2.18$ Å³, $V_3 = 7.99$ Å³ and $V_4 = 14.85$ Å³, respectively. The volumes of the two-atom structure -Si–O- in the threefold and fourfold ring structures are $V'_3 = 2.66$ Å³ and $V'_4 = 3.71$ Å³, respectively, which are larger than the volume of an SiO₄ tetrahedroid. When Ge subsitutes for Si in the v-SiO₂ network, each GeO₄ tetrahedroid causes an increment in volume because of the larger Ge–O bond length, b = 1.68-1.72 Å (Greegor *et al* 1987). For b = 1.70 Å, $\Delta V/V = 3(a - b)/a = 15\%$. This results in distortion and strain in the glass network, and therefore an increase in internal energy. The break-up of the ring defects in GeO₂–SiO₂ glass formation process releases the distortion and strain and lowers the internal energy. The decrease in the intensities of the D₁ and D₂ lines in the spectra can be attributed to this break-up. Because the threefold ring defect

Figure 1. The Raman spectra of v-SiO₂ (curve A), 0.1 at.% $GeO_2-99.9$ at.% SiO₂ (curve B), 1.0 at.% $GeO_2-99.0$ at.% SiO₂ (curve C), 5.0 at.% $GeO_2-95.0$ at.% SiO₂ (curve D), 13.0 at.% $GeO_2-87.0$ at.% SiO₂ (curve E), 15.0 at.% $GeO_2-85.0$ at.% SiO₂ (curve F), and 25.0 at.% $GeO_2-75.0$ at.% SiO₂ (curve G).

has a higher activation energy (Geissberger and Galeener 1983) and smaller volume than does the fourfold ring, we can expect there to be fewer fourfold ring defects than threefold ring defects in GeO_2 -SiO₂ glasses. These differences explain the fact that there is a sharp decrease in D₁ line intensity but a relatively small decrease in the D₂ line intensity.

It is also noticeable in the Raman spectra that the D_2 line becomes a broad feature for a GeO₂ content above 5.0 at.% and a band-like feature at around 700 cm⁻¹ appears for a GeO₂ content above 13.0 at.%. Peng and Tian (1989) suggested that these features are due to a new peak which is characteristic of Ge doping in the range 570–700 cm⁻¹ of the vDos spectra of the glasses. This new peak can be accounted for by superposition of the local densities of the states of SiO₄ and GeO₄ tetrahedra with different weights.

From the Raman spectra (figure 1), it is also shown that the W_3 vibration of the v-SiO₂ network decreases in the GeO₂ content range from 5.0 to 15.0 at.%. This decrease cannot be understood by simply considering the local densities of states of SiO₄ and GeO₄ tetrahedra (Peng and Tian 1989) and requires further work on the more basic process of electronic interactions in these glasses.

4. Conclusions

It was found that the Raman spectra of GeO_2 -SiO₂ glasses obtained in this investigation supports the model that there are some GeO_4 tetrahedra in the GeO_2 -SiO₂ glass network in which fewer fourfold and threefold ring structures exist than in v-SiO₂. It is demonstrated that the substitution of Ge for Si prevents the formation of ring structures in the network. The different responses of threefold and fourfold ring defects to this substitution can be understood from the differences in their activation energies and volumes. A new vibrational band in the range 570–700 cm⁻¹ due to Ge doping was found in the spectra of the high-GeO₂-content (above 5.0 at.%) samples. It was also found that the W₃ vibration of the v-SiO₂ network decreased in highly GeO₂ doped GeO₂–SiO₂ glasses.

Acknowledgment

The authors are grateful to Wuhan Post and Telecommunication Research Institute, Optical Fibre Department (Y X Liu and X Y Chang), for kindly providing the samples.

References

Bell R J 1982 Excitations in Disordered System ed. M F Thorpe (New York: Plenum) pp 333 ff, 347 ff
Bridenbaugh M, Espinosa G P, Griffiths J E, Phillips J C and Remeika J P 1979 Phys. Rev. B 20 4140
Galeener F L 1979 Phys. Rev. B 19 4292
— 1982a J. Non-Cryst. Solids 49 53
— 1982b Solid State Commun. 44 1037
Geissberger A E and Galeener F L 1983 Phys. Rev. B 28 3266
Greegor R B, Lytle F W, Kortright J and Fischer-Colbric A 1987 J. Non-Cryst. Solids 89 311
Griscom D L 1978 Borate Glasses ed. L D Pye, V D Frechette and N J Kreidl (New York: Plenum) pp 11 ff
Lucovsky G, Wong C K and Pollard W B 1983 The Structure of Non-Crystalline Materials 1982 ed. P H Gaskell, J M Parker and E A Davis (London: Taylor and Francis) p 369
Martin R M and Galeener F L 1981 Phys. Rev. B 23 3071
Peng G W and Tian D C 1989 J. Phys. Condens. Matter 1 at press
Sen P N and Thorpe M F 1977 Phys. Rev. B 15 4030
Shuker R and Gammon R W 1970 Phys. Rev. Lett. 25 222